
ATLAS – Computing and Physics

Ian Hinchliffe LBNL

November 7, 2005

Software and Physics

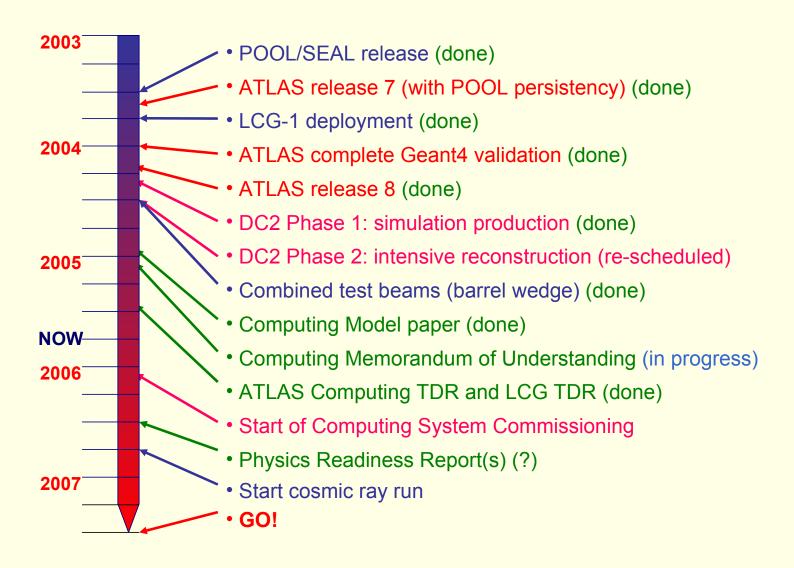
- Core software activities
- Inner detector software
- Physics activities

Significant increase in Physics manpower on software related activities since June 2005: New postdocs and students, migration from CDF and hardware.

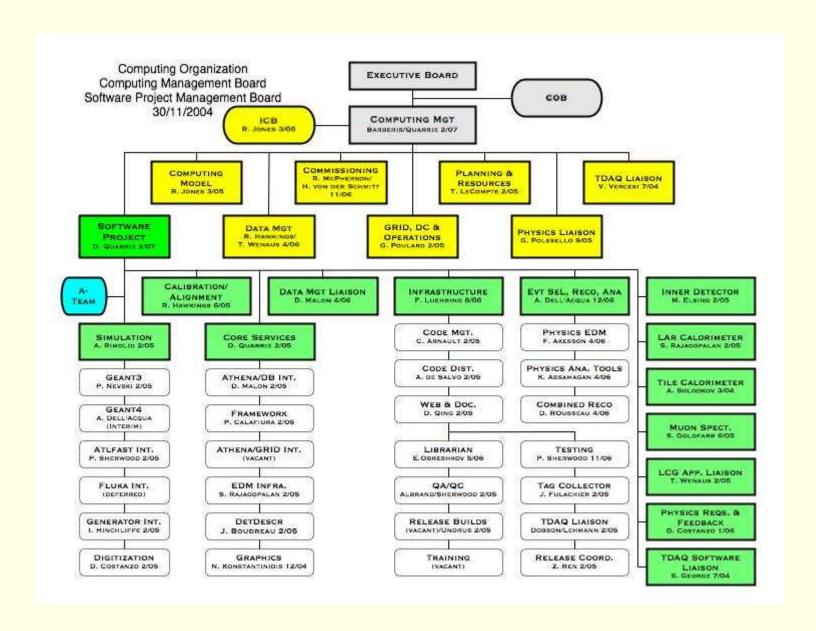
Data is coming

Cosmic ray running has started

At luminosity of $10^{33} \text{ cm}^{-2} \text{ sec}^{-1}$


Process	$\sigma(nb)$	rate	Events/year
min bias	10^{8}	100 MHz	$\sim 10^{15}$
top	0.85	0.85 Hz	$\sim 10M$
$Z \to \mu^+ \mu^-$	1.5	1.5	$\sim 10M$
$W \rightarrow e \nu$	15	15	$\sim 100M$
jets with $p_T > 200 \text{ GeV}$	1000	1000	$\sim 1000M$
WW pairs	0.08	0.08	$\sim 1M$
ZZ pairs	0.011	0.011	$\sim 12k$

100 pb⁻¹ will extend new physics reach beyond Tevatron


LBNL work to understand which early data will be used for alignement:jets, Drell-Yan $\it etc$

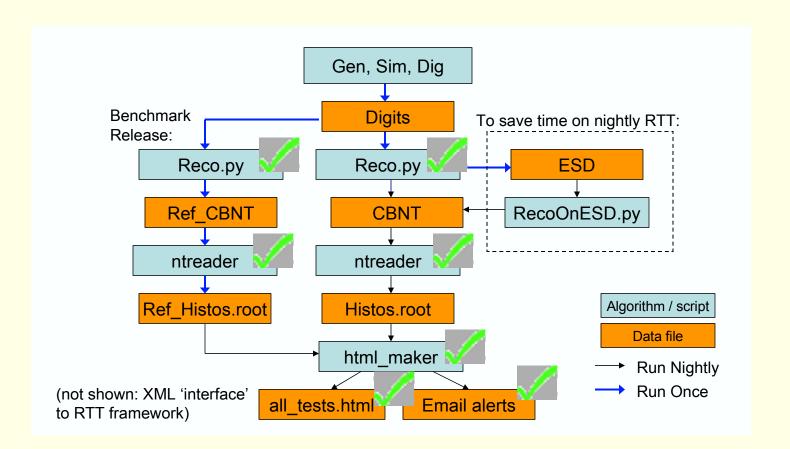
Core software— 1

Core software— 2: LBL current issues

- Quarrie is software project leader
- Gaudi "core" is a joint project with LHCb: Leggett is responsible for Atlas-Gaudi
- Calafiura heads atlas framework.
- Usability: Emphasis on "making software user. friendly (Calafiura, Woudstra)
- Performance: Profiling to understand bottlenecks particularly in user analysis (Lavrijsen)
- Grid integration (Woudstra)

LBNL is the lead ATLAS group in this area

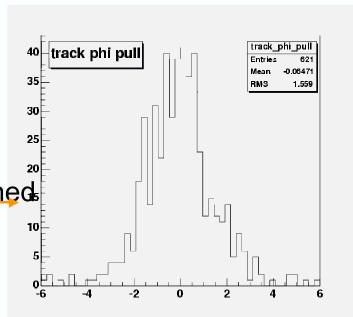
This needs a 1 hr talk to do it justice, therefore I move on...


Software validation – RTT (run time testing)

New activity aimed at understanding and monitoring inner detector reconstruction software

Vahsen, Zenz, Gaponenko

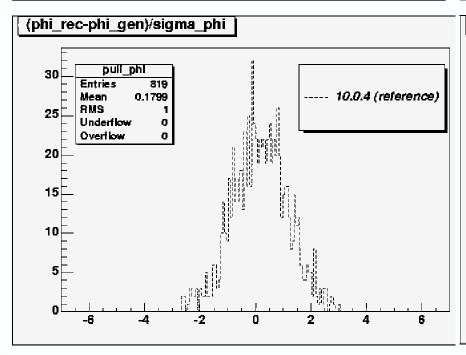
- Produce tools to compare track reconstruction in nightly build with benchmark release
- Use existing UCL Run Time Tester system
- Automatic webpage of comparison output
- Automated emails if there are changes, since these need to be understood!
- Expand involvement to larger-scale testing and active improvement of tracking software

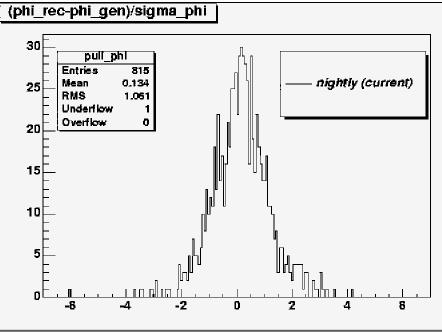


some example plots, just to show that it works

n3->Draw("track phi-track truth phi)/track error phi");

• phi pull distribution
(using reconstructed
tracks and best hit-matcheds
truth track)




Inner Detector Tracking Histogram "mc2rec_cuts_pull_phi"

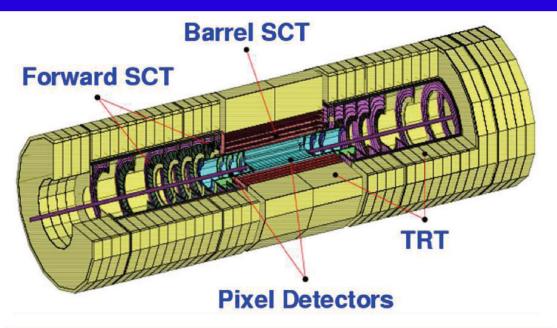
Test performed	Result	Pass/Fail		
Is the histogram mean consistent with zero?	fabs(mean/sigma_of_mean)=5.148603 (cut was 4.000000)	FAIL		

Inner Detector Tracking Histogram "mc2rec_cuts_pull_phi"

Test performed	Result	Pass/Fail	
Is the histogram mean consistent with zero?	fabs(mean/sigma_of_mean)=3.603895 (cut was 4.000000)	PASS	

This page was automatically generated on Wed Sep 14 00:55:24 2005.

This page was automatically generated on Wed Sep 14 00:55:24 2005.


Pixel Alignment work

Golling, Madaras...

- Atlas ID alignment strategy in its infancy
- Start using survey data on modules (made at LBL) as contraints in alignment
- Can, for example, use overlaps between modules for local alignment

Silicon = Pixel + SCT

	Bai	rrel	Forward			
Detector	PIX SCT		PIX	SCT		
# of layers/disks	3	4	2x3	2x9		
# of modules	1456	2112	2x144	2x988		
sub Total	35	68	2264			
Total	5832					

3 translations & 3 rotations of each module

In total we have to deal with 34,992 DoF's!

Tobias Golling

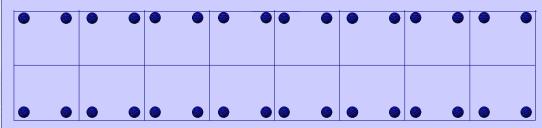
Page 2

Survey of Modules

Why survey?

To get the best description of the as-built geometry of the detector device (i.e. the modules) ⇒ Atignment

How is survey done?


Use an optical alignment machine (SmartScope) and measure the position of 16 points on each (long) side of the module (=32 measurements/module)

Survey on sector and again on disk

Measure position of module on sector

Measure position of sector on disk

Side 1

Side 2

Sketch of module:

- 16 measurements on each side (on chips sensor not visible!)
- not equidistant!

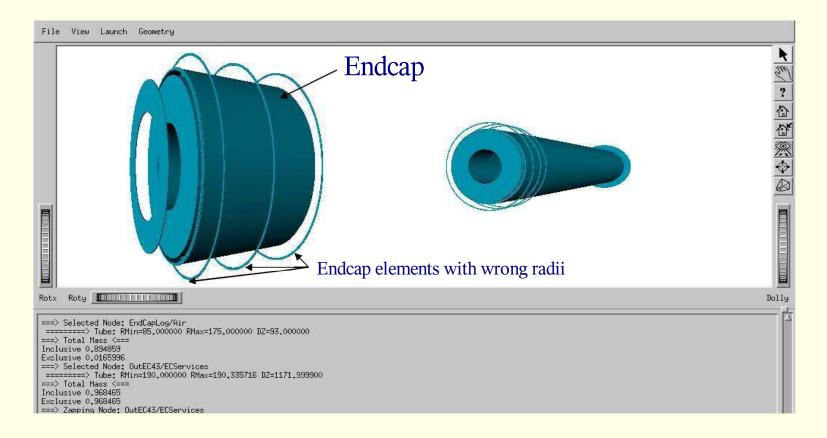
Tobias Golling

Page 2

Pixel disk Geometry description

Zdrazil, Gilchriese

- Part of "as installed geometry" for CSC (later)
- Must capture knowledge from construction into Atlas Geometry model (GeoModel)
- Accurate materail map is essential: current simulation geometry not correct
- ATLAS goal is 1%



End Caps in GeoModel

- Endcap = three disks, associated cooling pipes and services, endframe, pixel supports, interface of end cap to beam pipe support = deliverable item from LBNL
- Does not include PP0, PST, etc.

Marian Zdražil

Page 6

GeoModel versus Weights

		GeoModel	Measured	Measured-						
Item	GeoModel Name HybridECLog, ChipECLog, SiLog	Weight 245	Weight 266.4		Comments					
Modules					Does not include glue to sectors					
Disk Supports 1	DiskSupLog0	9.3								
Disk Supports 2	DiskSupLog1	248.4								
Disk Supports 3	DiskSupLog2	131.4								
Subtotal: Bare Sectors		389.1	480	91	Rough estimate, need better sub			traction of	tubes and fi	ttings
DISK 1,2,3 RING SUPPORT	InEC0, InEC1, InEC2	242.4	473	231	Rings+3 s	ector bolts				
EC cables	ECCableLog/ECCables	4.7								
DISK 1,2,3 SERVICE	OutEC1(3,5)	8.7								
DISK 1,2,3 COOL CAB (TUB+SIG/POW RIBB)	OutEC55,OutEC57,OutEC59	12.6			Radial ext	ent of this is	s wrong in (GeoModel		
Subtotal: Radial Type0		26.0								
DISK 1,2,3 1ST AXIAL SEG	OutEC7(9,11)	12.39								
DISKS 1,2,3 COOL MANIFOLDING + CONN	OutEC13(15,17)	194.7								
DISKS 1 COOL MANIFOLDING (2ND)	OutEC21	1.67								
DISKS 2 COOL MANIFOLDING (2ND)	OutEC19	2.34								
DISKS 3 COOL MANIFOLDING (2ND)	OutEC23	1								
COOL CAB FOR DISKS 1	OutEC25	74.16								
COOL CAB FOR DISKS 2	OutEC27	37.33								
COOL CAB FOR DISKS 3	OutEC29	7.64								
COOL CAB FOR DISKS 1	OutEC31	0.82								
COOL CAB FOR DISKS 2	OutEC33	1.23								
COOL CAB FOR DISKS 3	OutEC35	1.62								
COOL CAB FOR DISKS 1	OutEC37	33.13								
COOL CAB FOR DISKS 2	OutEC39	32.57								
COOL CAB FOR DISKS 3	OutEC41	32								
Subtotal: Tubes/Fittings + Type0		458.6	985.6	527	Includes piece of sector tube/fittings, no liquid in measured				ıred	
PIX-PST INTERFACE 100G TI	OutBrl49	102	77	-25						
OVERALL PIX SYS SUP(2ND)	OutBrl29	432								
OVERALL PIX SYS SUP COMPENS FOR HOLE	OutBrl31	47								
Subtotal: Frame		479	883	404	Frame + bolts					
DISK END PIECES	OutEC61	125	223	98	Endplate+bolts					
Missing items										
TROLLEY MOUNTS			33							
STRAIN RELIEF BRACKETS+BOLTS			97	97						
						F	ron	0.00	dcap	
	TOTAL	2041	3518	1477		1	1 011	CII	ucap	

Marian Zdražil Page 7

Event Simulation

- G. Savropoulous is primary ATLAS person with responsibility for Event Generation tools
- Maintains, Pythia, Herwig, Jimmy, Alpgen, Sherpa and MCAtNLO.
- Maintains core software for all event generators

Data production for Rome Physics workshop (June 2005)

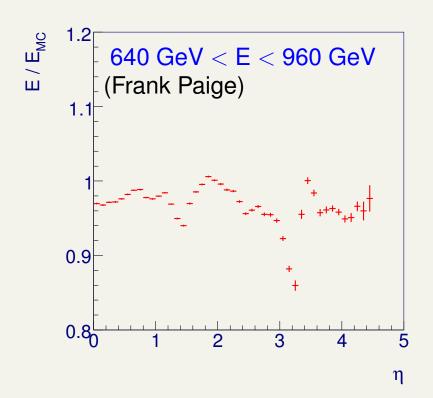
- Run by IH and Davide Costanzo (left LBL Feb 2006)
- Emergency situation following delays in DC2
- Approx 8M events simulated by Geant-4
- First large scale use of Grid: many lessons learned
- More than 50% of presentations in Rome used the data.

Rome physics workshop

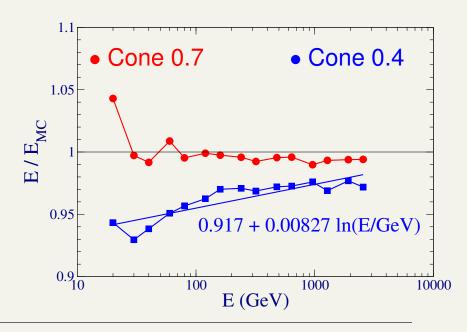
- http://agenda.cern.ch/fullAgenda.php?ida=a044738
- Start of serious thinking about data
- first large scale use of software by physicists

Data access strategies

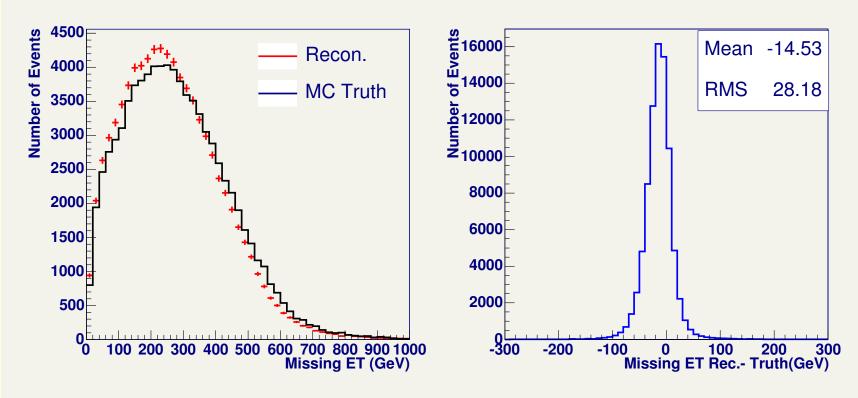
- Reconstructed data appears as ESD (event summary data) and AOD (analysis object data)
- ullet ESD is (~ 2 Mby/event) contains all information
- \bullet AOD (~ 100 Kby/event) is where most physicists work
- Navigation is possible between ESD and AOD (assuming both available locally)
- Rome workshop provided first large scale test of this http://agenda.cern.ch/fullAgenda.php?ida=a044738
- serious performance issues discovered


SUSY work for Rome Physics workshop

 Basic analysis code provided by (IH Costanzo): extensively developed by Paige (BNL) and used by entire group and by some other groups


Jet Reconstruction in SUSY events (Point SU1)

Different Jet reconstruction algorithms (Cone 0.4, Cone 0.7, K_T)

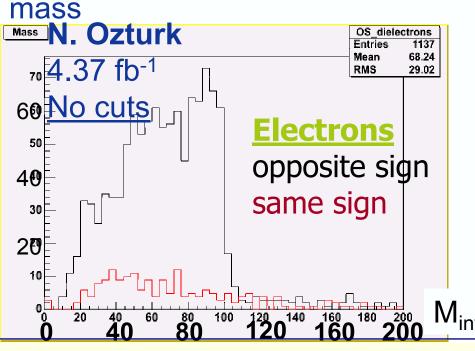

Same algorithm used to cluster both Calorimeter Towers and MC Truth

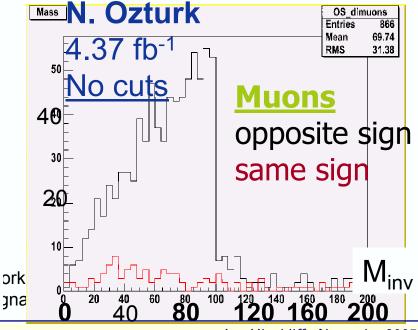
Match Reconstructed and MC truth jets in ΔR and compare their energy

Missing E_T Reconstruction (SU3 point)

10 ÷ 20 GeV Shift Observed in all the samples.

SU3: Di-lepton inv. mass



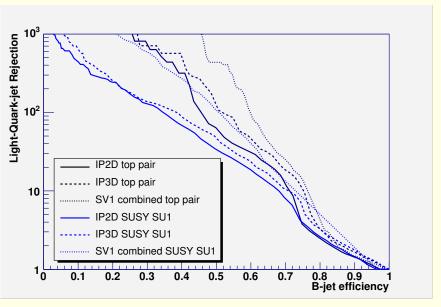

Bulk model, studied also in DC1/

In most scenarios the **first SUSY decay** reconstructed is leptonic decay of neutralinos.

"Smoking gun" is excess of opposite-sign lepton pairs with an edge structure in invariant

B-tagging in SUSY events

S. Vahsen- LBL


Many new particles will decay to b-quarks

Therefore identification of jets from bquarks is vital

Looked for tracks with finite impact parameter $c\tau \sim 100 \mu m$

Figure of merit is efficiency vs rejection against other jets

Supersymmetry events are very complex Plot shows current performance compared to top events

Looking ahead – Computing System Coomissioning (CSC)

Last major software test before real data

- Physics data production (Coordinator: I Hinchliffe): L 10M+ event to represent "early data"
- Data definition underway now
- Data will be use for full software test in 2006:
- Based on "as installed" geometry.
- Full production early 2006
- ullet Later: misaligned sample to all enable e.g. full calibration/alignment test

CSC Tests

- Sub-system tests with well-defined goals, preconditions, clients and quantifiable acceptance tests
 - Full Software Chain
 - From generators to physics analysis
 - Tier-0 Scaling
 - Calibration & Alignment
 - Trigger Chain & Monitoring
 - Distributed Data Management
 - Distributed Production (Simulation & Re-processing)
 - (Distributed) Physics Analysis
 - Integrated TDAQ/Offline
- Each sub-system is decomposed into components
 - E.g. Generators, Reconstruction (ESD creation)
- Goal is to minimize coupling between sub-systems and components and to perform focussed and quantifiable tests

David R. Quarrie: Computing System Commissioning

Others

- Luminosity task force: report due Feb 2006: M Shapiro (chair)
- Computer Model Group: ongoing: I Hinchliffe (member)
- Monte Carlo Truth task force: reported 30 Oct 2005: I Hinchliffe (member)
- Reconstruction software review: reported August 2005: I Hinchliffe (member)
- Atlas software useability task force: Calafiura (member)
- US ATLAS Task Force on analysis support: Hinchiffe and Gilchriese (members)

Regional activities

US ATLAS Task Force. Recommended setting up three analysis support centers based at BNL, ANL and LBNL

First meeting on October 21: 54 attendees from SLAC, Irvine, Oregon, Oaklahoma U, New Mexico, Arizona, Santa Cruz, Washington

Arranged by Loken; 11 talks (6 from LBNL)

http://agenda.cern.ch/fullAgenda.php?ida=a056605

Joint Tier 2 proposal with SLAC soon.

Conclusions/Messages

- Accelerator and Detectors approaching completion
- Huge effort needed to get software working in time for physics in 2007
- Must be fully focused on this
- LHC is first new energy frontier in a generation "Our field may be toast if we fail to fully exploit it"
- Back to work....

